Molecular dynamics simulations of D2O ice photodesorption.

نویسندگان

  • C Arasa
  • S Andersson
  • H M Cuppen
  • E F van Dishoeck
  • G J Kroes
چکیده

Molecular dynamics (MD) calculations have been performed to study the ultraviolet (UV) photodissociation of D(2)O in an amorphous D(2)O ice surface at 10, 20, 60, and 90 K, in order to investigate the influence of isotope effects on the photodesorption processes. As for H(2)O, the main processes after UV photodissociation are trapping and desorption of either fragments or D(2)O molecules. Trapping mainly takes place in the deeper monolayers of the ice, whereas desorption occurs in the uppermost layers. There are three desorption processes: D atom, OD radical, and D(2)O molecule photodesorption. D(2)O desorption takes places either by direct desorption of a recombined D(2)O molecule, or when an energetic D atom produced by photodissociation kicks a surrounding D(2)O molecule out of the surface by transferring part of its momentum. Desorption probabilities are calculated for photoexcitation of D(2)O in the top four monolayers and are compared quantitatively with those for H(2)O obtained from previous MD simulations of UV photodissociation of amorphous water ice at different ice temperatures [Arasa et al., J. Chem. Phys. 132, 184510 (2010)]. The main conclusions are the same, but the average D atom photodesorption probability is smaller than that of the H atom (by about a factor of 0.9) because D has lower kinetic energy than H, whereas the average OD radical photodesorption probability is larger than that of OH (by about a factor of 2.5-2.9 depending on ice temperature) because OD has higher translational energy than OH for every ice temperature studied. The average D(2)O photodesorption probability is larger than that of H(2)O (by about a factor of 1.4-2.3 depending on ice temperature), and this is entirely due to a larger contribution of the D(2)O kick-out mechanism. This is an isotope effect: the kick-out mechanism is more efficient for D(2)O ice, because the D atom formed after D(2)O photodissociation has a larger momentum than photogenerated H atoms from H(2)O, and D transfers momentum more easily to D(2)O than H to H(2)O. The total (OD + D(2)O) yield has been compared with experiments and the total (OH + H(2)O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D(2)O ice than when we compare with calculated yields for H(2)O ice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photodesorption of Ices Ii: H2o and D2o

Gaseous H2O has been detected in several cold astrophysical environments, where the observed abundances cannot be explained by thermal desorption of H2O ice or by H2O gas phase formation. These observations hence suggest an efficient non-thermal ice desorption mechanism. Here, we present experimentally determined UV photodesorption yields of H2O and D2O ice and deduce their photodesorption mech...

متن کامل

Photodesorption of water ice A molecular dynamics study

Context. Absorption of ultraviolet radiation by water ice coating interstellar grains can lead to dissociation and desorption of the ice molecules. These processes are thought to be important in the gas-grain chemistry in molecular clouds and protoplanetary disks, but very few quantitative studies exist. Aims. We compute the photodesorption efficiencies of amorphous water ice and elucidate the ...

متن کامل

Photodesorption of ices I : CO , N 2 and CO 2 Karin

Context. A longstanding problem in astrochemistry is how molecules can be maintained in the gas phase in dense interand circumstellar regions at temperatures well below their thermal desorption values. Photodesorption is a non-thermal desorption mechanism, which may explain the small amounts of observed cold gas in cloud cores and disk mid-planes. Aims. This study aims to determine the UV photo...

متن کامل

Wavelength resolved UV photodesorption and photochemistry of CO2 ice.

Over the last four years we have illustrated the potential of a novel wavelength-dependent approach in determining molecular processes at work in the photodesorption of interstellar ice analogs. This method, utilizing the unique beam characteristics of the vacuum UV beamline DESIRS at the French synchrotron facility SOLEIL has revealed an efficient indirect desorption mechanism that scales with...

متن کامل

UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption.

Carbon monoxide is after H(2) the most abundant molecule identified in the interstellar medium (ISM), and is used as a major tracer for the gas phase physical conditions. Accreted at the surface of water-rich icy grains, CO is considered to be the starting point of a complex organic--presumably prebiotic--chemistry. Non-thermal desorption processes, and especially photodesorption by UV photons,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 16  شماره 

صفحات  -

تاریخ انتشار 2011